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Abstract 

We discuss the use of the operator product expansion in computing 

nonleptonic weak decays. The estimation of "penguin" contributions is 

improved by a caz-eful treatment of the u-c cancellation. Using the 

vacuum insertion technique and equations of motion to estimate the operator 

rrtltrix element we find the penguin contribution is only & of the 

experimentally observed AI=; amplitude in kaon or hyperon decays. 



1. 

Much of the recent work on AS=1 nonleptonic weak decays (1,2,3) has 

used the operator product technique to sum radiative corrections to the 

basic Born graph. The resultant effective AS-1 Iagrangian has the form (2) 

zqj = d7G Le,c,e, d CL(Y,c,mL,~,~) o;L (0) ‘ (I) 

where ths coefficient functions my depend on the W lxxson mass, %, and 

any other mass scales m-together with the strong coupling constant g and 

the operator renomalisation point u*. 

The operators O1 are mdered according to their dimension and those 
% with dimension L 6 pick up large logarithmic corrections a: log(T) which 

lJ 
may be smd by mans of the renormlisation group. Operators of dimension 

> 6 arise; 'for example, fiwn a diagram like that'in Fig. l(a). To 

0$-l the do mimntpsrtofthis graphcomes fmmthe part ~1 

I 
4 

in the 

expansion of the W lmson propagator 
(k2+M$ ' 

the residual graph, Fig. l(b), 

being convergent. If, as in Fig. l(b), this graph only involves light 

quarks the scale cf loopmmentumis srrallandthis part is normally 

identified as part of the matrix element of,dimension s 6 operators. 

Unfortunately this is not wholly co?;"'t as there are contributions of this 

typewhicharenotcorrectedby EnnC% terms andthus maynotbe included 
P2 

in the dimension 6 operator contribution. They genuinely correspond to 

higher dimansion operators. It is hoped their contribution will not be 

sidficant (they contribute both to AI=3 and AI=; transitions). One 

possibility is they have small matrix elements in the valence approximation. 

If the residual graph involves a heavy quark, mass m 
qh’ 

in the loop, it will 

generate a coefficient = Cm%,-' for a dimension (6t2.L) operator. 
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~,_ Thus it is usual only to include dixension h 6 operators in 

eq.(l) to obtain the leading contribution to AS=1 nonleptonic decays. 

Operators of dimension c 4 are not present after renonmlisation. 

~A list of candidate dimension 6 operators AI=; is given in 

ref. (3) and these may be reduced by use of equations of mtion 

to the following set (2) 

o= I S‘ r,d, ;;;L f% -S Lb;, L u QdL - (iv> c) 

op &d,. L&uL -t s;+.u,Q-p& + 2 ~G~pdL~L$?L 

.. + 2S,~+-d~?~ r’rsL - rFLyj/fLzL x”cL - c~~pcL<&+% 

0 t 
3 

s’ L&4zLy=L - rL,pr. i;, kp”d, + k-+ 

Oh = G.r,$ &+, + gL fp& xrdL + 2 s;fpdL ZLjQL 

+2s’ L)$,.~L 6J”S, 4 2 “; ~pa,~L,jk.L + 2 ~L&cLCL fdL 

or = QpX”dL (&fA=c+ f 2, ()?A” de + z4 y-A%< 

-b ERpAaCR) 

ws 5 R ~~ $ 4, G’@ + md~ ?$ $,,% c$ @-y,a 6/ 

(2) 
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Here AA are SU(3) colour matrices and G w,A . 1s the gluon 
field tensor. 

In the standard model only the operators O1 and O2 arise through 

the W boson Born graph. This gives (1¶2,3) Cl : -1, c2 = 2 . In first 

order in the strong coupling constant gs the operators OS and 03, the 

so-called penguin operators, arise through the graph of Fig.2. 

Note that this graph gives the operator syul,adD G" 
VW which isrelated 

by an equation of motion to 05. The fact that the momentwn flowing 

through the gluon g can be soft does not affect this equation of motion 
m2 

[Q]. Also note that the contribution of Fig.2 is - EnL!$ and vanishes 
m 

U 

if m 
U 

= mc due to the cancellation of the u and c,contributions in a 

theory with the conventional GIM currents. Higher order graphs such as 
z ,> 

those in Fig.3,4 contribute terms involving large logarithms and 

these we will sum using renormslisation group techniques. 
.f 

In order gs, O7 does not occur. Its leading contribution comes 

in o?a3? g$ andmaybe expectedtobe small (2) . Wediscussthis 
(IO) operator elsewhere . The anomalous dimension matrix for the set 

of operators {01, 02, 03, 04, 05, O&is 

where 

P- 

4 0 0 0 0 0 

0 -2 0 0 0 0 

0 0 32 14 16 
-Ti<T 

o 

0 0 4 -% -; 0 

0 0 + -; 2 $ 

0 0 0 0% 0 

(31 

The solution of the renormalization group equations for the 

coefficient gives 
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I Ml, ‘d J /-‘- > 
-. 

a- t 
qQ+{-[ c ~ k ~j+‘iJ~“~ 

d+d” 
y” I 

gp,p: ,-c$ Jp-) (4) 

) is the calm vector of coefficient functions 

C2(s2. m2, t3 u2)- 

-5 
means the exponential is ordered, and !$Q2) is the usual running 

coupling constant defined by 

q-$3 = -(I,-? “f ) 2 , ._. ,~~~ 2 .- by g- + ‘.’ 
(5) 

nf is the ixm&er of quark flavours. 2 

auation (4) sums the leading logs of the form logCfir>. The 
2 d 

% identification of 7 requires some care. 
uO 

The leading log corrections to O1 and O2 arise frmn graphs of2the 

Ul form shown in Fig.3 and explicit calculation shows the segment C-2) 
"0 
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is I (” 7). The inclusion of "penguin" diagrams involves paphs of 
,I 

the fo&n shown in Fig.4. Explicitly eva$uating the con$ributions to 

iI, and OS we find terms involving (log - Etr2?and (log -%? but no , 

% 
m2 

92 

thattuld evidence an enhancement 

This persists inhigherorderas maybeseen fromthe general 

form of the Feynnmn integral expressed in terms of Feynman parameters. 
(5) 

Logarithms comefrom minimising the denominator function D which has the form 

JJ = (oLwYu’ -I q d; mfl c&q + f=lpp,g ) (6) 

where aw and a: are the Feynman parameters associated'with the W tnson 

propagator and the quark propagaaor respectively. 

will be negligible unless aw $ f$ 

The dependence of D on mq 

%' 
Integrating with respect to aw in this region gives logarithmic terms 

and 4l-c r;++" + "(~24'1 
c (8) 

together with the new dencaninator 

D 1% h,‘cu + -y+ &J m; c’ 4-F” (9) 

Here we have written 

LCo( 1 L &"C' +c" 

F(d) = ocUf='+ F* 
m2 

(10) 

Further logs of 4 cane from the region C' 2". 
M2 

The first log term 

(7) will give either Ln24 or an2rni terms. 
W 

in eq. The second log term 

in eq. (8) gives only J!nI' (u2)9.nM$ Clearly this argument say be repeated 

for further zeros of Cl'. 



6 .' 

Thus the log2sumation appropriate to di$grms as in Fig.4 
Ul % has the argument c---2) approximately given by CT). All other terms 

m92 

cancel between the u and c contributions. This gives zero mixing between 

?ipiifiLand 06, O6 si.nc;~>q~. F;;hemikng between 2~ p CLC 1'J.L 

and 0 1 5,06wechoose- = - -5 
p2, a P2 

where the constant of 

proportionali-& a is &&en $0 take account of the fact that the argument 
m 

of the logs is not quite G. For eqle Fig.2 gives 
~lJ 

I 

J 0 dr lx-“‘,’ k f ;;;+;:;;zJj 
having a fadtor a ; 4. In higher order this will not be the same factor 

but we expect some similar suppression of p2 relative to pz. 

Since only QcL+‘ mixes to 06 and 0 6 the relevant initial 

coefficients necessary to calculate the penguin contribution are those 

comespading to this openator:C3 = -$, C4 = $ 

Then we fjnd from eq.(4) 

c,- -y, 4 

5% $ a,-> 
3.~f 

-z ( 2.36 zL2 
-3.03 ?.OS- -1.0q 

ccc IO 4 3.1r 5 -4.89xL -r.04xz ) 

CL * 10-y l&/q $*” -c&l a;).@ -3.70 ZL ihos +kqgf*oq) 

where, fern = 4 

X, : f( :gJy' ( 
(10) 



7. 

In table 1 we tabulate these coefficients for two choices of 

g2(u2)/4rr and two choices of a. 

Before we can ccanpare our effective Jagrxsngian with experiment it is 

necessary to estimate matrix elements of the contributing operators. One 

technique that has been widely used (6,2) is to factorise the operators, 

or operators related by Fierz transformations, in all possible ways. Thus, 

for example, 

<?r+?l-f o,l K:,% 

.~ z ~+ti&4(Lj0>(~l ;JqI O] 
(11) 

The Remaining satrix elements are estimated via equations of motion 

e.g. 
<r+ Ilh6dLlo7 = 

Z ~‘_ if&p 

ek,t d) 
(12) 

In writing eq. (11) and eq. (12) no msntion has been made of the operator 

norm&is&ion uL - yet this is important. 

OS, for example, is not invariant under a change in u2 and this is 

reflected in eq. (12) by the fact that the quark masses used should be 

those relevant to the scale uL. What are reasonable values for these masses? 
% d Q 1 (8) Current algebra gives a value for ) 

mS 
%rn * This ratio is approximately 

valid for u2 much greater than symmetry breaking effects. The absolute 

value of ms is normally taken from mass differences between members h of a 

unitary multiplet using the rela*icn(g) 

9% = Co.Jf 
+ h*C$) WEy+D& 
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Obviously before ms(u2) can have a meaning the relati= normalisation 

of ms and ZS must be defined. If u2 is chosen to be of the same order as 

the mean mcmentum squared as that found in ha&-on h it should be reasonable 

then to use for <ss>h a bag model estimate. Such a calculation gives 

<;s>~ = 0.48 Nh where s is the number of strange valence quarks in h. 

Ass@g the current algebra ratios work at the same scale gives (8) 

ms % 300 MeV, md % 15 Ml, "u 2 3 N.?v. With the values for C5 and C5 given 

in Table 1, (for u 2- - (0.7 GeV)2) together with the operator matrix elements 

evaluated as above we find the operators O5 and O6 can account for only(1 

to (i 7 i 1 
TT - 3 

of the AI=; amplitudes observed in kaon and~hypenm decay 

(correspondingto~= land 2.4 respectivelY).The contribution of the 

operators Ol and O2 is essentially unchanged from previous analyses and, in 

the factorisation approximation, contributes about(g) to ($) of the observed 
2 

amplitudes in kaon decays. For the ase & (p2) q 2.4ih~~tion 

expansion probably breaks down near u2. We include it as an upper 

estimate of the calculable cor&.bution to Oi. 

It is amusing to ask what happens for a different choice of u*% m(u2) 

decreases as u2 increases apprPxirratelY as. (7) 

“(r,‘, = (g$ r “()&‘, 
For u2 1 = 2GeV2 this increases the estimate of the matrix elements of 

05 and O6 by a factor of 2.5 to 4. However calculation of C5(u2) and C6(p2) 

for this new subtraction point (cf Table 2) shows theyaresuppressed by 

factors of ito $. The product CO is reasonably constant (it would be 

exactly so if the factorisation technique were exact) and remains too small 

to explain the large AI=; amplitude. 
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Of course the factorisation technique for evaluating matrix elements 

is suspect and it is importanttolook forothermethcds. One recentapprxch 

uses PCAC plus the bag model('). It suffers from serious difficulties in 

continuing to the soft pion limit but the results are broadly in agreement 

with the factor&&ion results. We also note that With the normalisation of 

thesqu.arkgivenelxwechsrmPCAC (8) gives a value for mc a 1.7 GeV. This 

is in reasonable mt with the determination of mc from the JI mass (7) 

assuming free field nmtrix elements for $I operator matrix elements nonmlised 

at the scale mc. 

In conclusion me have re+xamined the ~oxxator product xmlysis for 

AS=1 nonleptonic weak decays. The, Operator ordering according to dimension 

is not justified by short distance arguments alone and requires asswnptions 

about the relevant operator matrix elements. Evaluation of the contribution 

of the dimension 6 operators suggests that the penguin contribution is too 

mall to account for the large AI=; enhancements found unless important 

contributions to the coefficient functions arise from the non-short distance 

parts of ths integrand. In this case the contribution of other operators 

such as 0, may be important.(loyll) 
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2.4 

2.4 

a aqrk3lent A Kquivalentb a 
Kiev) 1 Kiev) 1 c1 c1 c2 c2 c5 5 '6 '6 

.25 .25 1 -2.33 -2.33 0.13 0.13 -0.033 -0.033 -0.006 -0.006 

.25 .25 4 -2.33 -2.33 0.13 0.13 -0.052 -0.052 -0,013 -0,013 

.5 .5 1 -3.68 -3.68 0.10 0.10 -0.089 -0.089 -0.031 -0.031 

.5 .5 t -3.68 -3.68 0.10 0.10 -0.139 -0.139 -0.058 -0.058 

Coefficients .C,, C2, C5, C6 calculated fo' u = .7 Gev, t$ = 100 Gev and 

various values of the strong coupling constant and scale factor a. 



9 
U S 

S 

ti 

S 

W 
9 

d u U 

(a) 

Fig. 1 

Fig 2 

U S s 

( -e- w, ta 
-%--L-L 

d u U 

Fig. 3 
9 

+ 

(b) 

U S - 
m W g g +.... 

d U 

W 

d S 

+ 

d 

92 

+ 

w 

S 

Ii!!!!? 

d 
4, 

q2 
42 

(cl 

Fig. L 


